Over 10 years we helping companies reach their financial and branding goals. Onum is a values-driven SEO agency dedicated.

CONTACTS
ECET 2026 Preparation

Day 29 Applications of Derivatives – Maxima & Minima | ECET 2026 Maths

Concept Notes

Applications of Derivatives – Maxima & Minima

  1. Derivative →
    The derivative of a function tells us the rate of change.
  • If  f'(x) > 0 → function is increasing.
  • If  f'(x) < 0 → function is decreasing.

2. Critical Points →

  • Points where  f'(x) = 0 or  f'(x) ] does not exist.</li> <!-- /wp:list-item --></ul> <!-- /wp:list -->  <!-- wp:paragraph --> 3. <strong>Maxima/Minima Test:</strong> <!-- /wp:paragraph -->  <!-- wp:list --> <ul class="wp-block-list"><!-- wp:list-item --> <li>If [latex] f''(x) > 0 → Local Minimum.
  • If  f''(x) < 0 → Local Maximum.
  • If  f''(x) = 0 → Test fails (use higher derivatives or graph).

⚙️ Important Formulas

  • First Derivative Test:
    If  f'(x) changes sign from +ve to -ve at  x = c , then Maxima.
    If  f'(x) changes sign from -ve to +ve at  x = c , then Minima.
  • Second Derivative Test:
     f'(c) = 0, f''(c) > 0 \Rightarrow Local Minima.
     f'(c) = 0, f''(c) < 0 \Rightarrow Local Maxima.
  • Example function:
     f(x) = x^2 → Minima at  x=0 .
     f(x) = -x^2 → Maxima at  x=0 .

✨ Examples

  1.  f(x) = x^3 - 3x
  •  f'(x) = 3x^2 - 3 = 3(x^2 - 1)
  • Critical points →  x = \pm 1
  •  f''(x) = 6x
    • At  x = -1 ,  f''(-1) = -6 < 0 → Maxima.
    • At  x = 1 ,  f''(1) = 6 > 0 → Minima.

🔟 10 MCQs

Q1. If  f(x) = x^2 , then at  x=0 the function has:
(A) Maxima (B) Minima (C) Saddle point (D) None

Q2.  f(x) = -x^2 has maxima at:
(A) 0 (B) 1 (C) -1 (D) None

Q3. For  f(x) = x^3 , the point  x=0 is:
(A) Maxima (B) Minima (C) Neither (D) Both

Q4. If  f'(c) = 0 and  f''(c) > 0 , then  x=c is:
(A) Maxima (B) Minima (C) Inflection (D) Undefined

Q5. For  f(x) = x^4 , minima occurs at:
(A) 0 (B) 1 (C) -1 (D) None

Q6. If  f(x) = x^3 - 3x , then maxima is at:
(A) 0 (B) -1 (C) 1 (D) 2

Q7. For  f(x) = \sin x , maxima occurs at:
(A) 0 (B)  \pi/2 (C)  \pi (D)  3\pi/2

Q8.  f(x) = \cos x has minima at:
(A) 0 (B)  \pi/2 (C)  \pi (D)  2\pi

Q9. If  f(x) = e^x , then extrema is at:
(A) 0 (B) 1 (C) -1 (D) None

Q10. Second derivative test is used for:
(A) Increasing function (B) Max/Min test (C) Continuity (D) Limits


✅ Answer Key

Q.NoAnswer
1B
2A
3C
4B
5A
6B
7B
8C
9D
10B

🧠 Explanations

  • Q1:  f(x) = x^2 ,  f'(0) = 0, f''(0) = 2 > 0 → Minima.
  • Q2:  f(x) = -x^2 ,  f''(0) = -2 < 0 → Maxima at 0.
  • Q3:  f(x) = x^3 ,  f''(0) = 0 → neither Max nor Min.
  • Q4: Second derivative test says  f''(c) > 0 → Minima.
  • Q5:  f(x) = x^4 , minima at 0.
  • Q6: Done in example, maxima at -1.
  • Q7:  f(x) = \sin x , maxima at  \pi/2 .
  • Q8:  f(x) = \cos x , minima at  \pi .
  • Q9:  f'(x) = e^x > 0 , no extrema.
  • Q10: By definition.

🎯 Motivation / Why Practice Matters

Applications of derivatives are key in solving optimization problems (max profit, min cost, max area, min time, etc).
By practicing maxima & minima, you’ll build confidence for real-life engineering and ECET exam problems.


📲 CTA

👉 Want more practice? Join our study group here: Join ECET Group

Leave a comment

Your email address will not be published. Required fields are marked *