
Concept Notes
Applications of Derivatives – Maxima & Minima
- Derivative →
The derivative of a function tells us the rate of change.
- If
→ function is increasing.
- If
→ function is decreasing.
2. Critical Points →
- Points where
or
→ Local Minimum.
- If
→ Local Maximum.
- If
→ Test fails (use higher derivatives or graph).
⚙️ Important Formulas
- First Derivative Test:
Ifchanges sign from +ve to -ve at
, then Maxima.
Ifchanges sign from -ve to +ve at
, then Minima.
- Second Derivative Test:
Local Minima.
Local Maxima.
- Example function:
→ Minima at
.
→ Maxima at
.
✨ Examples
- Critical points →
- At
,
→ Maxima.
- At
,
→ Minima.
- At
🔟 10 MCQs
Q1. If , then at
the function has:
(A) Maxima (B) Minima (C) Saddle point (D) None
Q2. has maxima at:
(A) 0 (B) 1 (C) -1 (D) None
Q3. For , the point
is:
(A) Maxima (B) Minima (C) Neither (D) Both
Q4. If and
, then
is:
(A) Maxima (B) Minima (C) Inflection (D) Undefined
Q5. For , minima occurs at:
(A) 0 (B) 1 (C) -1 (D) None
Q6. If , then maxima is at:
(A) 0 (B) -1 (C) 1 (D) 2
Q7. For , maxima occurs at:
(A) 0 (B) (C)
(D)
Q8. has minima at:
(A) 0 (B) (C)
(D)
Q9. If , then extrema is at:
(A) 0 (B) 1 (C) -1 (D) None
Q10. Second derivative test is used for:
(A) Increasing function (B) Max/Min test (C) Continuity (D) Limits
✅ Answer Key
Q.No | Answer |
---|---|
1 | B |
2 | A |
3 | C |
4 | B |
5 | A |
6 | B |
7 | B |
8 | C |
9 | D |
10 | B |
🧠 Explanations
- Q1:
,
→ Minima.
- Q2:
,
→ Maxima at 0.
- Q3:
,
→ neither Max nor Min.
- Q4: Second derivative test says
→ Minima.
- Q5:
, minima at 0.
- Q6: Done in example, maxima at -1.
- Q7:
, maxima at
.
- Q8:
, minima at
.
- Q9:
, no extrema.
- Q10: By definition.
🎯 Motivation / Why Practice Matters
Applications of derivatives are key in solving optimization problems (max profit, min cost, max area, min time, etc).
By practicing maxima & minima, you’ll build confidence for real-life engineering and ECET exam problems.
📲 CTA
👉 Want more practice? Join our study group here: Join ECET Group