Over 10 years we helping companies reach their financial and branding goals. Onum is a values-driven SEO agency dedicated.

CONTACTS
ECET 2026 Preparation

Day 17 – Morning Session: Trigonometry – Compound Angle Formulas – ECET 2026 Mathematics

In ECET 2026, Mathematics is a high-scoring section for CSE diploma students. Compound Angle Formulas are formula-based questions that appear frequently in APECET and TSECET papers. Memorizing these formulas and practicing MCQs can help you score quick marks without lengthy calculations.

📘 Concept Notes – Compound Angle Formulas

Definition: Compound angles are angles formed by the sum or difference of two or more angles. The trigonometric values can be calculated using special formulas.

📐 Key Formulas

Sine Formulas:

    \[\sin(A + B) = \sin A \cos B + \cos A \sin B\]


    \[\sin(A - B) = \sin A \cos B - \cos A \sin B\]

Cosine Formulas:

    \[\cos(A + B) = \cos A \cos B - \sin A \sin B\]


    \[\cos(A - B) = \cos A \cos B + \sin A \sin B\]

Tangent Formulas:

    \[\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\]


    \[\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}\]

🧠 Key Points:

  • Always check angles are in same units (degrees/radians).
  • Tangent formulas are undefined if denominator = 0.
  • Commonly used in elevation, depression, and multiple angle problems.

🔟 10 Most Expected MCQs

Q1. Evaluate

    \[\sin 60^\circ \cos 30^\circ + \cos 60^\circ \sin 30^\circ\]

:
A) \sin 90^\circ B) \cos 90^\circ C) \sin 30^\circ D) \cos 60^\circ

Q2. Formula for \sin(A - B) is:
A) \sin A \cos B + \cos A \sin B B) \sin A \cos B - \cos A \sin B C) \cos A \cos B - \sin A \sin B D) \cos A \cos B + \sin A \sin B

Q3. \cos(A + B) is equal to:
A) \cos A \cos B - \sin A \sin B B) \cos A \cos B + \sin A \sin B C) \sin A \cos B - \cos A \sin B D) \sin A \cos B + \cos A \sin B

Q4. Evaluate

    \[\tan 45^\circ + \tan 45^\circ\]

:
A) \frac{1+1}{1-1} B) \frac{1+1}{1+1} C) \frac{2}{0} D) Undefined

Q5. Evaluate

    \[\cos 90^\circ \cos 30^\circ - \sin 90^\circ \sin 30^\circ\]

:
A) \cos 120^\circ B) \sin 60^\circ C) \cos 60^\circ D) \sin 30^\circ

Q6. Formula for \tan(A - B) is:
A) \frac{\tan A - \tan B}{1 - \tan A \tan B} B) \frac{\tan A + \tan B}{1 + \tan A \tan B} C) \frac{\tan A - \tan B}{1 + \tan A \tan B} D) \frac{\tan A + \tan B}{1 - \tan A \tan B}

Q7. Evaluate

    \[\sin 45^\circ \cos 45^\circ + \cos 45^\circ \sin 45^\circ\]

:
A) 0 B) 1 C) \sin 90^\circ D) \cos 90^\circ

Q8. Formula for \cos(A - B) is:
A) \cos A \cos B + \sin A \sin B B) \cos A \cos B - \sin A \sin B C) \sin A \cos B + \cos A \sin B D) \sin A \cos B - \cos A \sin B

Q9. Evaluate

    \[\tan(60^\circ - 45^\circ)\]

:
A) 1 B) \frac{\sqrt{3} - 1}{1 + \sqrt{3}} C) \sqrt{3} D) 0

Q10. Formula for \sin(A + B) is:
A) \sin A \cos B - \cos A \sin B B) \sin A \cos B + \cos A \sin B C) \cos A \cos B - \sin A \sin B D) \cos A \cos B + \sin A \sin B

✅ Answer Key

Q.NoAnswer
Q1A
Q2B
Q3A
Q4D
Q5C
Q6C
Q7C
Q8A
Q9B
Q10B

🧠 Explanations

Q1 → A: \sin 60^\circ \cos 30^\circ + \cos 60^\circ \sin 30^\circ = \sin(60+30) = \sin 90^\circ = 1

Q2 → B: Direct formula: \sin(A - B) = \sin A \cos B - \cos A \sin B

Q3 → A: Direct formula: \cos(A + B) = \cos A \cos B - \sin A \sin B

Q4 → D: Denominator becomes zero → Undefined

Q5 → C: Expression equals \cos(90+30) = \cos 120^\circ = -\frac12

Q6 → C: \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}

Q7 → C: Equals \sin 90^\circ = 1

Q8 → A: Direct formula

Q9 → B: Using tan subtraction formula

Q10 → B: \sin(A + B) = \sin A \cos B + \cos A \sin B

🎯 Why This Practice Matters

Compound Angle Formulas are direct formula-based questions in ECET. Memorizing formulas and practicing MCQs ensures quick problem-solving and improves Mathematics scores.

📲 Join Telegram

Daily formulas, MCQs & PDFs: @LearnNewThingsHub

Leave a comment

Your email address will not be published. Required fields are marked *