Over 10 years we helping companies reach their financial and branding goals. Onum is a values-driven SEO agency dedicated.

CONTACTS
ECET 2026 ECE

Day 2 ECET 2026 Digital Electronics – Logic Gates Notes, Formulas & MCQs

Concept Notes

1. Introduction to Logic Gates

  • Logic gates are the building blocks of digital circuits.
  • They perform Boolean algebra operations on binary inputs (0 or 1).
  • Basic types: AND, OR, NOT.
  • Universal gates: NAND, NOR.
  • Other: XOR, XNOR.

2. Basic Gates

(a) AND Gate

  • Output = 1 only if all inputs = 1.
  • Boolean:  Y = A \cdot B

(b) OR Gate

  • Output = 1 if any input = 1.
  • Boolean:  Y = A + B

(c) NOT Gate

  • Inverts input.
  • Boolean:  Y = \overline{A}

3. Universal Gates

(a) NAND Gate

  • Equivalent to AND + NOT.
  • Boolean:  Y = \overline{A \cdot B}
  • Can implement any logic function.

(b) NOR Gate

  • Equivalent to OR + NOT.
  • Boolean:  Y = \overline{A + B}
  • Also universal gate.

4. Other Gates

(a) XOR (Exclusive OR)

  • Output = 1 if inputs are different.
  • Boolean:  Y = A \oplus B = A \overline{B} + \overline{A}B

(b) XNOR (Exclusive NOR)

  • Output = 1 if inputs are same.
  • Boolean:  Y = \overline{A \oplus B}

5. Truth Tables

GateExpression(A=0,B=0)(A=0,B=1)(A=1,B=0)(A=1,B=1)
AND A \cdot B 0001
OR A + B 0111
NOT \overline{A} 1 (if A=0)0 (if A=1)
NAND \overline{A \cdot B} 1110
NOR \overline{A + B} 1000
XOR A \oplus B 0110
XNOR \overline{A \oplus B} 1001

⚙️ Formulas

  • AND:  Y = A \cdot B
  • OR:  Y = A + B
  • NOT:  Y = \overline{A}
  • NAND:  Y = \overline{A \cdot B}
  • NOR:  Y = \overline{A + B}
  • XOR:  Y = A \oplus B = A \overline{B} + \overline{A}B
  • XNOR:  Y = \overline{A \oplus B}

💡 Example

Q: Simplify using only NAND gates:

 Y = A + B

Ans:

  • Step 1: OR =  \overline{\overline{A+B}}
  • Step 2: Apply De Morgan →  \overline{\overline{A} \cdot \overline{B}}
  • Step 3: Implement using NAND → NAND(NAND(A,A), NAND(B,B))

🔟 10 MCQs

Q1. The output of an AND gate is 1 when:
a) All inputs are 0
b) All inputs are 1
c) Any input is 1
d) Inputs are different

Q2. The Boolean expression for a NAND gate is:
a)  A + B
b)  \overline{A \cdot B}
c)  \overline{A + B}
d)  A \oplus B

Q3. The XOR gate output is 1 when:
a) Inputs are same
b) Inputs are different
c) All inputs are 0
d) All inputs are 1

Q4. Which gate is known as universal gate?
a) AND
b) OR
c) XOR
d) NAND

Q5. The Boolean expression  A \cdot \overline{B} + \overline{A}B represents:
a) XOR
b) NOR
c) NAND
d) XNOR

Q6. NOR gate output is 1 when:
a) Any input is 1
b) All inputs are 0
c) Inputs are different
d) All inputs are 1

Q7. Which gate is equivalent to the complement of OR?
a) NAND
b) NOR
c) XOR
d) XNOR

Q8. The output of an XNOR gate is 1 when:
a) Inputs are different
b) Inputs are same
c) First input is 1
d) Second input is 0

Q9. The minimum number of NAND gates required to implement an OR gate is:
a) 1
b) 2
c) 3
d) 4

Q10. If A=1 and B=0, the output of  A \oplus B is:
a) 0
b) 1
c) 2
d) Undefined


✅ Answer Key

Q NoAnswer
Q1b
Q2b
Q3b
Q4d
Q5a
Q6b
Q7b
Q8b
Q9c
Q10b

🧠 Explanations

  • Q1: AND → only when all inputs are 1 → (b).
  • Q2: NAND = NOT(AND) =  \overline{A \cdot B} .
  • Q3: XOR = 1 when inputs differ.
  • Q4: NAND & NOR are universal; here answer is NAND.
  • Q5: Given = XOR form.
  • Q6: NOR = NOT(OR); OR is 1 if any input =1 → so NOR is 1 only if all inputs = 0.
  • Q7: Complement of OR → NOR.
  • Q8: XNOR = 1 when inputs are equal.
  • Q9: OR can be built with 3 NANDs.
  • Q10: XOR(1,0) = 1.

🎯 Motivation

Logic gates are the alphabet of digital electronics.
👉 Without them, microprocessors, memory, and controllers cannot be built.
👉 In ECET, 5–6 marks are directly asked from Boolean simplification and gate-level implementation.
👉 If you master this, digital design becomes very easy.


📲 CTA

👉 For more ECET 2026 Digital Electronics practice, join our free Telegram group for daily notes, quizzes & tips.
🔗 Join Here

Leave a comment

Your email address will not be published. Required fields are marked *