Over 10 years we helping companies reach their financial and branding goals. Onum is a values-driven SEO agency dedicated.

CONTACTS
ECET 2026 ECE

Day 7 ECET 2026 – Digital Electronics Number Systems

Concept Notes

1. Types of Number Systems

  • Decimal (Base 10): Digits 0 \text{ to } 9. Example: 257_{10}.
  • Binary (Base 2): Digits 0,1. Example: 1011_{2} = 11_{10}.
  • Octal (Base 8): Digits 0 \text{ to } 7. Example: 145_{8} = 101_{10}.
  • Hexadecimal (Base 16): Digits 0 \text{ to } 9, A \text{ to } F. Example: 2F_{16} = 47_{10}.

2. Conversion Methods

a) Decimal → Any Base

Divide the number by base, collect remainders.

Example:

25_{10} \to ?<em data-start="1031" data-end="1243">{2}

25 \div 2 = 12 , R1
12 \div 2 = 6 , R0
6 \div 2 = 3 , R0
3 \div 2 = 1 , R1
1 \div 2 = 0 , R1
So,

25</em>{10} = 11001_{2}

.


b) Binary → Decimal

Multiply each bit by 2^n.

Example: 1011_{2}

 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8+0+2+1 = 11_{10}


c) Octal ↔ Binary

Each octal digit → 3 binary bits.

Example: 57_{8} = 101111_{2}.


d) Hexadecimal ↔ Binary

Each hex digit → 4 binary bits.

Example: 2F_{16} = 0010 , 1111_{2}.


3. Fractions Conversion

Decimal Fraction → Binary

Multiply fraction by 2, take integer part.

Example:

0.625_{10} \to ?<em data-start="1886" data-end="2050">{2}

0.625 \times 2 = 1.25 , (1)
0.25 \times 2 = 0.5 , (0)
0.5 \times 2 = 1.0 , (1)
So

0.625</em>{10} = 0.101_{2}

.


4. Complements

  • 1’s complement: Replace 0 → 1, 1 → 0.
  • 2’s complement: 1’s complement + 1.
  • Used in binary subtraction.

⚙️ Important Formulas

Decimal to Binary:

 N_{10} = \sum_{i=0}^{n} b_i \times 2^i

Decimal to Octal:

 N_{10} = \sum_{i=0}^{n} o_i \times 8^i

Decimal to Hexadecimal:

 N_{10} = \sum_{i=0}^{n} h_i \times 16^i

Number of digits required in base r:

 d = \lfloor \log_r N \rfloor + 1


🔟 10 MCQs

Q1.  (1010)_2 = ? in decimal
a) 8
b) 9
c) 10
d) 11

Q2.  (125)_{10} = ? in binary
a) 1111101
b) 1101101
c) 1111010
d) 1011110

Q3. Which number system uses base 16?
a) Octal
b) Hexadecimal
c) Binary
d) Decimal

Q4.  (57)_8 = ? in binary
a) 101111
b) 111001
c) 110111
d) 111111

Q5.  (2F)_{16} = ? in decimal
a) 45
b) 46
c) 47
d) 48

Q6.  (100101)_2 = ? in octal
a) 45
b) 37
c) 25
d) 35

Q7. 1’s complement of 10101_2 is:
a) 01010
b) 10110
c) 11010
d) 10001

Q8. 2’s complement of 1001_2 is:
a) 0110
b) 1011
c) 1111
d) 0101

Q9. Number of digits required to represent 255_{10} in binary:
a) 7
b) 8
c) 9
d) 6

Q10. Decimal fraction 0.625_{10} = ? in binary
a) 0.11_2
b) 0.101_2
c) 0.1001_2
d) 0.111_2


✅ Answer Key

Q NoAnswer
Q1c
Q2a
Q3b
Q4a
Q5c
Q6b
Q7a
Q8b
Q9b
Q10b

🧠 Explanations

  • Q1: 1010_2 = 8+2=10_{10}.
  • Q2: 125_{10} = 1111101_2.
  • Q3: Hexadecimal uses base 16.
  • Q4: 57_8 \to 5=101, 7=111 \to 101111_2.
  • Q5: 2F_{16} = 2 \times 16 + 15 = 47.
  • Q6: 100101_2 = 37_8.
  • Q7: 1’s complement = invert bits → 01010.
  • Q8: 2’s complement of 1001 → 0110+1 = 1011.
  • Q9: \log_2 255 \approx 7.99 \Rightarrow 8 , \text{digits}.
  • Q10: From earlier example = 0.101_2.

🎯 Motivation

Number systems are the foundation of Digital Electronics.

  • Every microprocessor/microcontroller uses binary, octal, and hex.
  • In ECET, conversion & complements are repeated every year.
    👉 Mastering them ensures free marks in the exam!

📲 CTA

👉 Practice daily ECET mock questions on our portal for Digital Electronics & get exam-ready.
🔗 Join Here

Leave a comment

Your email address will not be published. Required fields are marked *