Over 10 years we helping companies reach their financial and branding goals. Onum is a values-driven SEO agency dedicated.

CONTACTS
ECET 2026 ECE

Day 11 ECET 2026 ECE – Boolean Algebra Explained

Why This Topic is Important for ECET

Boolean Algebra is the foundation of Digital Electronics. All logic circuits, simplification techniques, and gate-level designs are built on Boolean laws.
In ECET 2026, questions often come as:

  • Simplify Boolean expressions
  • Apply theorems
  • Solve logic design MCQs
    Mastering Boolean Algebra ensures speed and accuracy in solving logic problems.

📘 Concept Notes

1. Basics

  • Boolean Algebra deals with binary variables (0,1).
  • Three primary operations:
    • AND (·) → multiplication
    • OR (+) → addition
    • NOT (‾) → complement

Example:

  • A⋅B=1A \cdot B = 1A⋅B=1 only if both A = 1 and B = 1.
  • A+B=1A + B = 1A+B=1 if either A or B = 1.
  • A‾=1\overline{A} = 1A=1 if A = 0.

2. Fundamental Laws

  • Identity: A+0=A, A⋅1=AA + 0 = A, \, A \cdot 1 = AA+0=A,A⋅1=A
  • Null: A+1=1, A⋅0=0A + 1 = 1, \, A \cdot 0 = 0A+1=1,A⋅0=0
  • Idempotent: A+A=A, A⋅A=AA + A = A, \, A \cdot A = AA+A=A,A⋅A=A
  • Complement: A+A‾=1, A⋅A‾=0A + \overline{A} = 1, \, A \cdot \overline{A} = 0A+A=1,A⋅A=0
  • Commutative: A+B=B+A, A⋅B=B⋅AA + B = B + A, \, A \cdot B = B \cdot AA+B=B+A,A⋅B=B⋅A
  • Associative: A+(B+C)=(A+B)+CA + (B + C) = (A + B) + CA+(B+C)=(A+B)+C
  • Distributive: A⋅(B+C)=A⋅B+A⋅CA \cdot (B + C) = A \cdot B + A \cdot CA⋅(B+C)=A⋅B+A⋅C

3. Duality Principle

  • Every Boolean expression has a dual obtained by:
    • Replacing + ↔ ·
    • Replacing 0 ↔ 1

Example:

  • A+0=AA + 0 = AA+0=A → Dual = A⋅1=AA \cdot 1 = AA⋅1=A.

4. De Morgan’s Theorems

  • \overline{A \cdot B} = \overline{A} + \overline{B}
  • \overline{A + B} = \overline{A} \cdot \overline{B}

Example:
A⋅B⋅C‾=A‾+B‾+C‾\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}A⋅B⋅C=A+B+C.


5. Simplification of Expressions

Use Boolean laws + theorems to reduce logic circuits.

Example:
Simplify:  Y = A + AB
→ Apply Absorption Law →  Y = A


6. Canonical Forms

  • SOP (Sum of Products): OR of multiple AND terms.
  • POS (Product of Sums): AND of multiple OR terms.

Example:

  • SOP:  Y = A\overline{B} + AB
  • POS:  Y = (A + B)(A + \overline{B})

⚙️ Formulas

  •  A + A = A
  •  A \cdot A = A
  •  A + \overline{A} = 1
  •  A \cdot \overline{A} = 0
  •  A + 0 = A
  •  A \cdot 1 = A
  •  A + 1 = 1
  •  A \cdot 0 = 0
  •  \overline{A + B} = \overline{A} \cdot \overline{B}
  •  \overline{A \cdot B} = \overline{A} + \overline{B}

🔟 10 MCQs

Q1. The dual of  A + 0 = A is:
a)  A \cdot 0 = A
b)  A \cdot 1 = A
c)  A + 1 = A
d)  A \cdot A = A

Q2. Simplify:  A + AB .

Q3. Which law is represented by  A + \overline{A} = 1 ?
a) Identity
b) Null
c) Complement
d) Distributive

Q4. Apply De Morgan’s theorem:  \overline{A + B} .

Q5. The SOP of F = 1 for minterms (1, 2, 3) with variables (A,B):
a)  A\overline{B} + AB + \overline{A}B
b)  \overline{A}\overline{B} + AB
c)  A + B
d) None

Q6. Which of the following is true?
a)  A + AB = A
b)  A + AB = B
c)  A + AB = A + B
d)  A + AB = AB

Q7. How many canonical SOP terms exist for 3 variables?
a) 4
b) 6
c) 8
d) 12

Q8. Simplify  (A + B)(A + \overline{B}) .

Q9. Which law is applied in:  A + BC = (A + B)(A + C) ?

Q10. If F = AB + A\overline{B}, then F simplifies to:
a) A
b) B
c) AB
d) A + B


✅ Answer Key

Q NoAnswer
Q1b
Q2A
Q3c
Q4\overline{A} \cdot \overline{B}
Q5a
Q6a
Q7c
Q8A
Q9Distributive Law
Q10A

🧠 Explanations

  • Q1: Dual of A+0=A is A·1=A → (b).
  • Q2: A+AB → A(1+B)=A → simplified result A.
  • Q3: This is the Complement Law.
  • Q4: By De Morgan’s theorem → A+B‾=A‾⋅B‾\overline{A+B} = \overline{A} \cdot \overline{B}A+B​=A⋅B.
  • Q5: Minterms (1,2,3) in SOP → AB‾\overline{B}B+AB+A‾B\overline{A}BAB.
  • Q6: Absorption Law → A+AB=A.
  • Q7: For 3 variables → 2³ = 8 minterms.
  • Q8: Apply distributive → A + BB‾\overline{B}B = A + 0 = A.
  • Q9: This is distributive expansion.
  • Q10: AB + AB‾\overline{B}B = A(B+B‾\overline{B}B) = A.

🎯 Motivation / Why Practice Matters

Boolean Algebra problems in ECET 2026 require quick simplification skills.
Practicing regularly will:

  • Improve speed in reducing expressions
  • Build strong fundamentals for K-maps and logic design
  • Help in scoring direct formula-based marks with high accuracy
    In competitive exams like ECET, Boolean simplification is a sure-shot scoring area if mastered.

📲 CTA

👉 Join our WHATSAPP group for ECET 2026 updates and discussions →
🔗 Click Here

Leave a comment

Your email address will not be published. Required fields are marked *