Over 10 years we helping companies reach their financial and branding goals. Onum is a values-driven SEO agency dedicated.

CONTACTS
ECET 2026 Preparation

Day 25 – Morning Session: Maths – Partial Fractions – ECET 2026 CSE

Mathematics lo Partial Fractions topic chala important for ECET exams. Polynomial fractions ni simpler fractions ga break cheyadam valla solving easy avutundi. Almost every year questions repeat avutayi, so ee concept ni master chesthe scoring easy.


📘 Concept Notes – Partial Fractions

Partial Fractions ante:
Oka rational function ni (numerator, denominator polynomial unna fraction) simpler fractions sum ga express cheyadam.

Types of Partial Fractions

1️⃣ Proper Fraction: Degree of numerator < Degree of denominator.

  • Example: \frac{2x+3}{(x+1)(x+2)}

2️⃣ Improper Fraction: Degree of numerator ≥ Degree of denominator.

  • First long division cheyyali, taruvata partial fractions apply cheyyali.

Standard Forms

  • If denominator has distinct linear factors:

\frac{P(x)}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}

If denominator has repeated linear factors:

\frac{P(x)}{(x-a)^2} = \frac{A}{x-a} + \frac{B}{(x-a)^2}

If denominator has quadratic factors:

\frac{P(x)}{(x^2+bx+c)} = \frac{Ax+B}{x^2+bx+c}


⚙️ Key Formulas

  • \text{If } F(x) = \frac{P(x)}{Q(x)}, \quad \deg P(x) < \deg Q(x) \Rightarrow \text{Partial Fractions possible}
  • \text{If } \deg P(x) \geq \deg Q(x), \quad \text{use Division first}

🔟 10 Most Expected MCQs – ECET 2026 Maths

Q1. \frac{1}{(x-1)(x-2)} ni partial fractions form lo rayandi.
A) \frac{1}{x-1} - \frac{1}{x-2}
B) \frac{1}{x-1} + \frac{1}{x-2}
C) \frac{2}{x-1} + \frac{3}{x-2}
D) None

Q2. Denominator lo repeated root unte \frac{1}{(x-1)^2} ni express chesthe?
A) \frac{A}{x-1}
B) \frac{A}{x-1} + \frac{B}{(x-1)^2}
C) \frac{A}{(x-1)^2}
D) None

Q3. \frac{2x+3}{(x+1)(x+2)} = ?
A) \frac{1}{x+1} + \frac{1}{x+2}
B) \frac{2}{x+1} + \frac{1}{x+2}
C) \frac{3}{x+1} - \frac{1}{x+2}
D) None

Q4. \frac{1}{x^2-1} can be written as?
A) \frac{1}{2(x-1)} - \frac{1}{2(x+1)}
B) \frac{1}{x-1} + \frac{1}{x+1}
C) \frac{1}{(x-1)(x+1)}
D) None

Q5. Which of the following is a correct form of partial fraction expansion of \frac{1}{(x-2)(x^2+1)}?
A) \frac{A}{x-2} + \frac{Bx+C}{x^2+1}
B) \frac{A}{x-2} + \frac{B}{x^2+1}
C) \frac{Ax+B}{x-2} + \frac{C}{x^2+1}
D) None

Q6. In \frac{2x+5}{(x-1)(x-2)}, the values of A and B are obtained by:
A) Substitution method
B) Comparing coefficients
C) Both A & B
D) None

Q7. Degree condition for applying partial fractions:
A) \deg(\text{Numerator}) < \deg(\text{Denominator})
B) \deg(\text{Numerator}) > \deg(\text{Denominator})
C) Always possible
D) None

Q8. \frac{1}{(x-1)^2(x-2)} expansion form is:
A) \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-2}
B) \frac{A}{x-1} + \frac{B}{x-2}
C) \frac{A}{(x-1)^2} + \frac{B}{x-2}
D) None

Q9. Improper fractions ni first step lo ela treat chestaru?
A) Direct ga expand cheyyali
B) First Long Division chesi, remainder ni expand cheyyali
C) Ignore denominator
D) None

Q10. \frac{x}{x^2+1} can be expressed as:
A) \frac{Ax+B}{x^2+1}
B) \frac{A}{x^2+1}
C) \frac{Ax}{x^2+1}
D) None

Answer Key

Q.NoAnswer
Q1B
Q2C
Q3A
Q4D
Q5C
Q6B
Q7A
Q8D
Q9C
Q10B

Explanations of Answers

  • Q1: Using standard form, \frac{1}{(x-1)(x-2)} = \frac{1}{x-1} - \frac{1}{x-2}.
  • Q2: For repeated root, always include \frac{A}{x-1} + \frac{B}{(x-1)^2}.
  • Q3: Cross-multiplication method → 2x+3 = A(x+2)+B(x+1) → A=2, B=1.
  • Q4: \frac{1}{x^2-1} = \frac{1}{(x-1)(x+1)} = \frac{1}{2(x-1)} - \frac{1}{2(x+1)}.
  • Q5: Quadratic factor case → \frac{A}{x-2} + \frac{Bx+C}{x^2+1}.
  • Q6: Either substitution (x=1,2) or comparing coefficients.
  • Q7: Degree of numerator must be less.
  • Q8: For repeated + distinct factors → \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-2}.
  • Q9: Improper fraction → do polynomial division first.
  • Q10: Quadratic factor → \frac{Ax+B}{x^2+1}.

🎯 Why This Practice Matters

Partial Fractions topic lo ECET lo direct ga 2–3 questions vastee chance ekkuva.
Practicing expansion techniques → fast solving + accuracy in exams.
Alage engineering lo Laplace transforms, integration lo kuda chala use untundi.


📲 Join Our ECET Prep Community

👉 For daily practice questions, solved problems & video sessions:
Telegram: @LearnNewThingsHub

Leave a comment

Your email address will not be published. Required fields are marked *